Advanced tutorial

We present contexts and sparsity handling with DifferentiationInterface.jl.

using BenchmarkTools
using DifferentiationInterface
import ForwardDiff, Zygote
using SparseConnectivityTracer: TracerSparsityDetector
using SparseMatrixColorings

Contexts

Assume you want differentiate a multi-argument function with respect to the first argument.

f_multiarg(x, c) = c * sum(abs2, x)

The first way, which works with every backend, is to create a closure:

f_singlearg(c) = x -> f_multiarg(x, c)

Let's see it in action:

backend = AutoForwardDiff()
x = float.(1:3)

gradient(f_singlearg(10), backend, x)
3-element Vector{Float64}:
 20.0
 40.0
 60.0

However, for performance reasons, it is sometimes preferrable to avoid closures and pass all arguments to the original function. We can do this by wrapping c into a Constant and giving this constant to the gradient operator.

gradient(f_multiarg, backend, x, Constant(10))
3-element Vector{Float64}:
 20.0
 40.0
 60.0

Preparation also works in this case, even if the constant changes before execution:

prep_other_constant = prepare_gradient(f_multiarg, backend, x, Constant(-1))
gradient(f_multiarg, prep_other_constant, backend, x, Constant(10))
3-element Vector{Float64}:
 20.0
 40.0
 60.0

For additional arguments which act as mutated buffers, the Cache wrapper is the appropriate choice instead of Constant.

Sparsity

Sparse AD is very useful when Jacobian or Hessian matrices have a lot of zeros. So let us write functions that satisfy this property.

f_sparse_vector(x::AbstractVector) = diff(x .^ 2) + diff(reverse(x .^ 2))
f_sparse_scalar(x::AbstractVector) = sum(f_sparse_vector(x) .^ 2)

Dense backends

When we use the jacobian or hessian operator with a dense backend, we get a dense matrix with plenty of zeros.

x = float.(1:8);
8-element Vector{Float64}:
 1.0
 2.0
 3.0
 4.0
 5.0
 6.0
 7.0
 8.0
dense_first_order_backend = AutoForwardDiff()
J_dense = jacobian(f_sparse_vector, dense_first_order_backend, x)
7×8 Matrix{Float64}:
 -2.0   4.0   0.0   0.0    0.0    0.0   14.0  -16.0
  0.0  -4.0   6.0   0.0    0.0   12.0  -14.0    0.0
  0.0   0.0  -6.0   8.0   10.0  -12.0    0.0    0.0
  0.0   0.0   0.0   0.0    0.0    0.0    0.0    0.0
  0.0   0.0   6.0  -8.0  -10.0   12.0    0.0    0.0
  0.0   4.0  -6.0   0.0    0.0  -12.0   14.0    0.0
  2.0  -4.0   0.0   0.0    0.0    0.0  -14.0   16.0
dense_second_order_backend = SecondOrder(AutoForwardDiff(), AutoZygote())
H_dense = hessian(f_sparse_scalar, dense_second_order_backend, x)
8×8 Matrix{Float64}:
  112.0   -32.0     0.0     0.0     0.0     0.0  -112.0   128.0
  -32.0    96.0   -96.0     0.0     0.0  -192.0   448.0  -256.0
    0.0   -96.0   256.0  -192.0  -240.0   576.0  -336.0     0.0
    0.0     0.0  -192.0   224.0   320.0  -384.0     0.0     0.0
    0.0     0.0  -240.0   320.0   368.0  -480.0     0.0     0.0
    0.0  -192.0   576.0  -384.0  -480.0  1120.0  -672.0     0.0
 -112.0   448.0  -336.0     0.0     0.0  -672.0  1536.0  -896.0
  128.0  -256.0     0.0     0.0     0.0     0.0  -896.0  1120.0

The results are correct but the procedure is very slow. By using a sparse backend, we can get the runtime to increase with the number of nonzero elements, instead of the total number of elements.

Sparse backends

Recipe to create a sparse backend: combine a dense backend, a sparsity detector and a compatible coloring algorithm inside AutoSparse. The following are reasonable defaults:

sparse_first_order_backend = AutoSparse(
    dense_first_order_backend;
    sparsity_detector=TracerSparsityDetector(),
    coloring_algorithm=GreedyColoringAlgorithm(),
)

sparse_second_order_backend = AutoSparse(
    dense_second_order_backend;
    sparsity_detector=TracerSparsityDetector(),
    coloring_algorithm=GreedyColoringAlgorithm(),
)

Now the resulting matrices are sparse:

jacobian(f_sparse_vector, sparse_first_order_backend, x)
7×8 SparseArrays.SparseMatrixCSC{Float64, Int64} with 26 stored entries:
 -2.0   4.0    ⋅     ⋅      ⋅      ⋅    14.0  -16.0
   ⋅   -4.0   6.0    ⋅      ⋅    12.0  -14.0     ⋅ 
   ⋅     ⋅   -6.0   8.0   10.0  -12.0     ⋅      ⋅ 
   ⋅     ⋅     ⋅    0.0    0.0     ⋅      ⋅      ⋅ 
   ⋅     ⋅    6.0  -8.0  -10.0   12.0     ⋅      ⋅ 
   ⋅    4.0  -6.0    ⋅      ⋅   -12.0   14.0     ⋅ 
  2.0  -4.0    ⋅     ⋅      ⋅      ⋅   -14.0   16.0
hessian(f_sparse_scalar, sparse_second_order_backend, x)
8×8 SparseArrays.SparseMatrixCSC{Float64, Int64} with 40 stored entries:
  112.0   -32.0      ⋅       ⋅       ⋅       ⋅   -112.0   128.0
  -32.0    96.0   -96.0      ⋅       ⋅   -192.0   448.0  -256.0
     ⋅    -96.0   256.0  -192.0  -240.0   576.0  -336.0      ⋅ 
     ⋅       ⋅   -192.0   224.0   320.0  -384.0      ⋅       ⋅ 
     ⋅       ⋅   -240.0   320.0   368.0  -480.0      ⋅       ⋅ 
     ⋅   -192.0   576.0  -384.0  -480.0  1120.0  -672.0      ⋅ 
 -112.0   448.0  -336.0      ⋅       ⋅   -672.0  1536.0  -896.0
  128.0  -256.0      ⋅       ⋅       ⋅       ⋅   -896.0  1120.0

Sparse preparation

In the examples above, we didn't use preparation. Sparse preparation is more costly than dense preparation, but it is even more essential. Indeed, once preparation is done, sparse differentiation is much faster than dense differentiation, because it makes fewer calls to the underlying function.

Some result analysis functions from SparseMatrixColorings.jl can help you figure out what the preparation contains. First, it records the sparsity pattern itself (the one returned by the detector).

jac_prep = prepare_jacobian(f_sparse_vector, sparse_first_order_backend, x)
sparsity_pattern(jac_prep)
7×8 SparseArrays.SparseMatrixCSC{Bool, Int64} with 26 stored entries:
 1  1  ⋅  ⋅  ⋅  ⋅  1  1
 ⋅  1  1  ⋅  ⋅  1  1  ⋅
 ⋅  ⋅  1  1  1  1  ⋅  ⋅
 ⋅  ⋅  ⋅  1  1  ⋅  ⋅  ⋅
 ⋅  ⋅  1  1  1  1  ⋅  ⋅
 ⋅  1  1  ⋅  ⋅  1  1  ⋅
 1  1  ⋅  ⋅  ⋅  ⋅  1  1

In forward mode, each column of the sparsity pattern gets a color.

column_colors(jac_prep)
8-element Vector{Int64}:
 1
 2
 1
 2
 3
 4
 3
 4

And the colors in turn define non-overlapping groups (for Jacobians at least, Hessians are a bit more complicated).

column_groups(jac_prep)
4-element Vector{SubArray{Int64, 1, Vector{Int64}, Tuple{UnitRange{Int64}}, true}}:
 [1, 3]
 [2, 4]
 [5, 7]
 [6, 8]

Sparsity speedup

When preparation is used, the speedup due to sparsity becomes very visible in large dimensions.

xbig = rand(1000)
jac_prep_dense = prepare_jacobian(f_sparse_vector, dense_first_order_backend, zero(xbig))
@benchmark jacobian($f_sparse_vector, $jac_prep_dense, $dense_first_order_backend, $xbig)
BenchmarkTools.Trial: 410 samples with 1 evaluation.
 Range (minmax):   4.851 ms176.735 ms   GC (min … max):  9.69% … 96.37%
 Time  (median):      5.606 ms                GC (median):    16.49%
 Time  (mean ± σ):   12.375 ms ±  28.304 ms   GC (mean ± σ):  49.19% ± 19.90%

                                                             
  ██▅██▆▁▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▅▄▄▁▁▁▅▅ ▆
  4.85 ms       Histogram: log(frequency) by time       174 ms <

 Memory estimate: 57.63 MiB, allocs estimate: 1515.
jac_prep_sparse = prepare_jacobian(f_sparse_vector, sparse_first_order_backend, zero(xbig))
@benchmark jacobian($f_sparse_vector, $jac_prep_sparse, $sparse_first_order_backend, $xbig)
BenchmarkTools.Trial: 10000 samples with 1 evaluation.
 Range (minmax):  23.123 μs 4.583 ms   GC (min … max):  0.00% … 98.35%
 Time  (median):     28.663 μs               GC (median):     0.00%
 Time  (mean ± σ):   38.062 μs ± 88.185 μs   GC (mean ± σ):  13.36% ±  7.33%

  ▄█▇▄▂▂▂                                            ▂▂     ▂
  ████████▆▅▇▅▄▃▁▁▃▁▁▁▁▁▁▁▁▃▁▁▁▃▁▁▁▁▁▃▁▁▃▁▁▁▁▁▁▁▁▁▁▁████▆▇▇ █
  23.1 μs      Histogram: log(frequency) by time       149 μs <

 Memory estimate: 305.31 KiB, allocs estimate: 27.

Better memory use can be achieved by pre-allocating the matrix from the preparation result (so that it has the correct structure).

jac_buffer = similar(sparsity_pattern(jac_prep_sparse), eltype(xbig))
@benchmark jacobian!($f_sparse_vector, $jac_buffer, $jac_prep_sparse, $sparse_first_order_backend, $xbig)
BenchmarkTools.Trial: 10000 samples with 1 evaluation.
 Range (minmax):  20.588 μs  8.112 ms   GC (min … max):  0.00% … 0.00%
 Time  (median):     24.525 μs                GC (median):     0.00%
 Time  (mean ± σ):   33.620 μs ± 120.904 μs   GC (mean ± σ):  11.16% ± 5.98%

  ▅▇▅▂▁  ▁                                          ▁▂▂▁     ▂
  ████████▇▆▆▇▆▅▄▃▁▁▃▃▁▁▁▃▃▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▅████▆▆▆▇ █
  20.6 μs       Histogram: log(frequency) by time       118 μs <

 Memory estimate: 234.75 KiB, allocs estimate: 18.

And for optimal speed, one should write non-allocating and type-stable functions.

function f_sparse_vector!(y::AbstractVector, x::AbstractVector)
    n = length(x)
    for i in eachindex(y)
        y[i] = abs2(x[i + 1]) - abs2(x[i]) + abs2(x[n - i]) - abs2(x[n - i + 1])
    end
    return nothing
end

ybig = zeros(length(xbig) - 1)
f_sparse_vector!(ybig, xbig)
ybig ≈ f_sparse_vector(xbig)
true

In this case, the sparse Jacobian should also become non-allocating (for our specific choice of backend).

jac_prep_sparse_nonallocating = prepare_jacobian(f_sparse_vector!, zero(ybig), sparse_first_order_backend, zero(xbig))
jac_buffer = similar(sparsity_pattern(jac_prep_sparse_nonallocating), eltype(xbig))
@benchmark jacobian!($f_sparse_vector!, $ybig, $jac_buffer, $jac_prep_sparse_nonallocating, $sparse_first_order_backend, $xbig)
BenchmarkTools.Trial: 10000 samples with 1 evaluation.
 Range (minmax):  13.415 μs37.660 μs   GC (min … max): 0.00% … 0.00%
 Time  (median):     13.536 μs               GC (median):    0.00%
 Time  (mean ± σ):   13.712 μs ±  1.125 μs   GC (mean ± σ):  0.00% ± 0.00%

  █                                                          ▁
  █▄▅▄█▅▃▃▄▅█▆▅▆▆▄▆▅▅▄▄▅▅▅▅▄▁▅▅▃▃▄▄▁▁▁▁▄▃▃▃▃▃▃▃▁▁▃▁▁▁▁▁▁▄▅▇ █
  13.4 μs      Histogram: log(frequency) by time      21.6 μs <

 Memory estimate: 0 bytes, allocs estimate: 0.