Tutorial
We present a typical workflow with DifferentiationInterfaceTest.jl, building on the tutorial of the DifferentiationInterface.jl documentation (which we encourage you to read first).
julia> using DifferentiationInterface, DifferentiationInterfaceTestjulia> using ForwardDiff: ForwardDiffjulia> using Zygote: Zygote
Introduction
The AD backends we want to compare are ForwardDiff.jl and Zygote.jl.
backends = [AutoForwardDiff(), AutoZygote()]2-element Vector{ADTypes.AbstractADType}:
AutoForwardDiff()
AutoZygote()To do that, we are going to take gradients of a simple function:
f(x::AbstractArray) = sum(sin, x)f (generic function with 1 method)Of course we know the true gradient mapping:
∇f(x::AbstractArray) = cos.(x)∇f (generic function with 1 method)DifferentiationInterfaceTest.jl relies with so-called Scenarios, in which you encapsulate the information needed for your test:
- the operator category (here
:gradient) - the behavior of the operator (either
:inor:outof place) - the function
f - the input
xof the functionf(and possible tangents or contexts) - the reference first-order result
res1(and possible second-order resultres2) of the operator - the arguments
prep_argspassed during preparation
xv = rand(Float32, 3)
xm = rand(Float64, 3, 2)
scenarios = [
Scenario{:gradient,:out}(f, xv; res1=∇f(xv)),
Scenario{:gradient,:out}(f, xm; res1=∇f(xm)),
];Testing
The main entry point for testing is the function test_differentiation. It has many options, but the main ingredients are the following:
julia> test_differentiation( backends, # the backends you want to compare scenarios; # the scenarios you defined, correctness=true, # compares values against the reference type_stability=:none, # checks type stability with JET.jl detailed=true, # prints a detailed test set )Test Summary: | Pass Total Time Testing correctness | 88 88 10.0s AutoForwardDiff() | 44 44 5.0s gradient | 44 44 4.9s Scenario{:gradient,:out} f : Vector{Float32} -> Float32 | 22 22 2.5s Scenario{:gradient,:out} f : Matrix{Float64} -> Float64 | 22 22 1.4s AutoZygote() | 44 44 5.0s gradient | 44 44 5.0s Scenario{:gradient,:out} f : Vector{Float32} -> Float32 | 22 22 4.0s Scenario{:gradient,:out} f : Matrix{Float64} -> Float64 | 22 22 1.0s
Benchmarking
Once you are confident that your backends give the correct answers, you probably want to compare their performance. This is made easy by the benchmark_differentiation function, whose syntax should feel familiar:
df = benchmark_differentiation(backends, scenarios);| Row | backend | scenario | operator | prepared | calls | samples | evals | time | allocs | bytes | gc_fraction | compile_fraction |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Abstract… | Scenario… | Symbol | Bool | Int64 | Int64 | Int64 | Float64 | Float64 | Float64 | Float64 | Float64 | |
| 1 | AutoForwardDiff() | Scenario{:gradient,:out} f : Vector{Float32} -> Float32 | value_and_gradient | true | 1 | 26441 | 579 | 4.74266e-8 | 3.0 | 112.0 | 0.0 | 0.0 |
| 2 | AutoForwardDiff() | Scenario{:gradient,:out} f : Vector{Float32} -> Float32 | gradient | true | 1 | 28187 | 674 | 4.07878e-8 | 2.0 | 80.0 | 0.0 | 0.0 |
| 3 | AutoForwardDiff() | Scenario{:gradient,:out} f : Matrix{Float64} -> Float64 | value_and_gradient | true | 1 | 28679 | 239 | 1.18167e-7 | 3.0 | 160.0 | 0.0 | 0.0 |
| 4 | AutoForwardDiff() | Scenario{:gradient,:out} f : Matrix{Float64} -> Float64 | gradient | true | 1 | 34426 | 213 | 1.12272e-7 | 2.0 | 128.0 | 0.0 | 0.0 |
| 5 | AutoZygote() | Scenario{:gradient,:out} f : Vector{Float32} -> Float32 | value_and_gradient | true | 1 | 29358 | 33 | 8.28788e-7 | 25.0 | 688.0 | 0.0 | 0.0 |
| 6 | AutoZygote() | Scenario{:gradient,:out} f : Vector{Float32} -> Float32 | gradient | true | 1 | 20670 | 44 | 6.37318e-7 | 23.0 | 624.0 | 0.0 | 0.0 |
| 7 | AutoZygote() | Scenario{:gradient,:out} f : Matrix{Float64} -> Float64 | value_and_gradient | true | 1 | 26658 | 25 | 1.10204e-6 | 29.0 | 1040.0 | 0.0 | 0.0 |
| 8 | AutoZygote() | Scenario{:gradient,:out} f : Matrix{Float64} -> Float64 | gradient | true | 1 | 49360 | 18 | 9.11111e-7 | 27.0 | 976.0 | 0.0 | 0.0 |
The resulting object is a DataFrame from DataFrames.jl, whose columns correspond to the fields of DifferentiationBenchmarkDataRow.