
∂P .jl terminology and notation guide

Keno Fischer

FOREWORD

The field of automatic differentiation (AD) has a long
history, both in the academic literature and in programming
practice. However, despite this long history, or perhaps
because of it, the terminology for various concepts and oper-
ations is neither standard nor consistent. This inconsistency
imposes upon new implementers of AD tools a burden to
clearly state the meaning of any terminology they might
venture to employ. This document is an attempt to do such
that for my present work on a new AD tool for the Julia
language. It is intended 1) to give contributors and users
a common vocabulary to discuss the manifold abstractions
required to create a modern AD tools, 2) to explain why
certain terminology may have been chosen and 3) to serve
implementers as a guide to the proper functioning of the
tool when lost deep in the web of details. By necessity,
the terminology in this guide is borrowed from several
different fields of study (most relevantly category theory
and differential geometry). Nevertheless, this guide does not
intend to be an introduction to these fields, nor does it assume
that readers have had such an introduction. Instead, we try to
give some examples and intuition for why the abstractions
chosen are of interest to the implementation of automatic
differentiation. Lastly, despite using terminology that might
be amenable to formalization, this document is not an attempt
to do so and as such certain liberties may be taken that would
require careful treatment in a more formal treatise. With that
out of the way, let’s begin:

I. OPTICAL CONSTRUCTIONS

To begin our quest, we shall first put aside the topic of
differentiation entirely and study a relatively recent construc-
tion from category theory known as an optic. The power of
the optic construction lies in its ability to combine both a
covariant and a contravariant transformation in one abstrac-
tion while retaining composability. Following Riley [1], we
briefly consider the following explicit description of an optic
(those not familiar with the language of category theory are
encouraged to skip straight to the diagrams).

Definition 0.1: For some symmetric monoidal category C,
we define the category OpticC . Whose objects are pairs
(A,A′) of objects in C and whose morphisms have repre-
sentatives given by ⟨l|r⟩ : (A,A′) p→ (B,B′) are pairs (l, r)
where l : A → M ⊗ B, r : M ⊗ B′ → A′ (the choice of
the object M depending on the representative - see Riley for
details).

This definition makes manifest the combination of co-
and contravariant data. For a representative ⟨l|r⟩, l varies
covariantly while r varies contravariantly. We additionally

have a “memory” or “residual” object M . This object is not
uniquely determined and in fact we shall make good use of
that fact in our actual use case later. For now, We briefly
exhibit the composition rules for these morphisms. Suppose
⟨l1|r1⟩ : (A,A′) p→ (B,B′), ⟨l2|r2⟩ : (B,B′) p→ (C,C ′).
Then the sequenial composition ⟨l12|r12⟩ = ⟨l1|r1⟩ ; ⟨l2|r2⟩
may be written explicitly as

l12(a) := (m1⊗m2, c) where (m1, b) = l1(a), (m2, c) = l2(b)

r12(m1 ⊗m2, c
′) := r1(m1, r2(m2, c

′))

While these definitions are perfectly explicit, it might be
easier to understand what is going on by considering optics
diagramatically (diagrams taken from Riley [1]). For ⟨l|r⟩
we draw:

l rA

B

A′

B′

(1)

We compose these optics by inserting one optic in the hole
of another, e.g. for the composition we have above, we might
write ⟨l1|r1⟩ ; ⟨l2|r2⟩

l1

l2

r1

r2

C C ′

A A′ (2)

From the diagrammatic view, it is immediately clear
that this composition is indeed another optic and what the
composition rule for these optics should be:

C C ′

A A′

l12 r12

(3)

The reader is encouraged to verify that this diagrammatic
derivation of l12 and r12 matches the algebraic definition
above.

A. Encoding Optics in Julia
One of the original applications of optic constructions is

the manipulation of deeply nested data structures, so let’s
take that example and consider how we might represent it
in Julia. Optics for this application are often called lenses,
though since we are just using them an an example here
we shall not concern ourselves with a precise definition. We
begin by defining an abstract optic type as well as a concrete
representation of morphisms as pairs ⟨l|r⟩:

Snippet 1
1 abstract type AbstractOptic; end
2

3 struct OpticRepr <: AbstractOptic
4 l::Function
5 r::Function
6 end
7 OpticRepr(o::OpticRepr) = o
8 OpticRepr(o::AbstractOptic) =
9 OpticRepr(a->left(o, a),

10 (m, b′)->right(o, m, b′))
11

12 left(o::OpticRepr, a) = o.l(a)
13 right(o::OpticRepr, m, b′) = o.r(m, b′)
14

15 function ;(o1::AbstractOptic, o2::AbstractOptic)
16 OpticRepr(
17 function (a)
18 x = left(o1, a)
19 y = left(o2, x[2])
20 (x[1], y[1]), y[2]
21 end,
22 ((m1, m2), c′)->right(o1, m1, right(o2, m2, c′))
23)
24 end
25

Given these definitions, we can now define an optic
constructor that allows us to modify an immutable value at
a given location:

Snippet 2
1 SetIndex(idx) = OpticRepr(
2 obj->(obj, getindex(obj, idx)),
3 (obj, update)->setindex(obj, update, idx)
4)

which we may use like so:
julia> tup = (1,(2,3))
julia> o = SetIndex(2) ; SetIndex(1)
julia> m, c = left(o, tup)
julia> c
2
julia> right(o, m, c + 100)
(1, (102, 3))

However, as written, this definition as a big problem: It
gives us the state ‘m‘ explicitly. The type and value of ‘m‘
depends on the representative of the optic, but nothing in
our above definition requires the state ‘m‘ to be matched
to the optic representative ‘o‘. To see the representation
problem explicitly, suppose we noticed that the state in this
representation is somewhat suboptimal:
julia> m
((1, (2, 3)), (2, 3))

and instead defined a more optimized representation of the
same optic:

Snippet 3
1 struct FastSetIndex <: AbstractOptic
2 path::NTuple{N, Int} where N
3 end
4 FastSetIndex(i::Int) = FastSetIndex((i,))
5

6 path_getindex(obj, ::Tuple{}) = obj
7 path_getindex(obj, path::Tuple) =
8 path_getindex(getindex(obj, first(path)), tail(path))
9 left(f::FastSetIndex, obj) =

10 (obj, path_getindex(obj, f.path))
11

12 path_setindex(obj, update, (idx,)::Tuple{Int}) =
13 setindex(obj, update, idx)
14 path_setindex(obj, update, path) =
15 setindex(obj,
16 path_setindex(getindex(obj, first(path)),
17 update, tail(path)),
18 first(path))
19 function right(f::FastSetIndex, obj, update)
20 path_setindex(obj, update, f.path)
21 end
22

23 (a::FastSetIndex ; b::FastSetIndex) =
24 FastSetIndex((a.path..., b.path...))

Our example from above goes through just the same:
julia> tup = (1,(2,3))
julia> of = FastSetIndex(2) ; FastSetIndex(1)
julia> m, c = left(of, tup)
julia> c
2
julia> right(of, m, c + 100)
(1, (102, 3))

but our state is much smaller:
julia> m
(1, (2, 3))

With these two different representatives for the same
optic, the representative, dependence of ‘m‘ becomes quite
apparent:
julia> right(of, m, c + 100)
(1, (102, 3))

julia> right(o, m, c + 100)
ERROR: MethodError: no method matching
setindex(::Int64, ::Tuple{Int64,Int64}, ::Int64)

In this example, this might be quite silly, but in general
it presents a problem depending on how the representative
is chosen. E.g. an optic constructor might perform a ran-
domized search for the most efficient representative, so two
calls to the constructor will not necessarily yield the same
representative. We would thus prefer to have an interface to
our optics that either does not explicitly expose the state to
the user, or if it does, tags the state with a particular choice or
representative. Here are two (equivalent) interfaces to optics
that have this property:

Snippet 4
1 # Block style optics interface
2 function (o::AbstractOptic)(f::Function, a)
3 m, b = left(o, a)
4 b′ = f(b)
5 right(o, m, b′)
6 end
7

8 # Continuation style optics interface
9 function (o::AbstractOptic)(a)

10 m, b = left(o, a)
11 b, b′->right(o, m, b′)
12 end

With these definitions, our update operation from above
becomes
julia> of(tup) do c

c + 100
end
(1, (102, 3))

julia> c, back = of(tup);

julia> back(c+100)
(1, (102, 3))

The observant reader may at this point remark that written
this way, we are simply describing a standard design pattern,
found frequently in julia libraries (indeed so frequently that
the do syntax was partly introduced to support it). For
example, the julia standard library includes the cd function,
which modulo error handling function looks like this:
function cd(f::Function, dir::AbstractString)

old = pwd()
cd(dir)
f()
cd(old)

end

While it’s not a precise match for the optics encoding as
we have defined it (and of course is side-effectful which we
have not discussed at all).
OpticRepr(a->(pwd(), (cd(a[1]); tail(a))),

(m, b)->cd(m)))

Have we thus wasted the better part of two pages exploring
and giving a name to a notion that is so natural as to be a
standard design pattern? No! The key takeaway from this
section should be twofold optics: 1) Optics have a nice
composition property that allows you to take two optics and
combine them into another optic and 2) Optical constructions
are quite natural and you are probably already familiar with
them.

II. SSA AS A CATEGORY / OPTICS OVER SSA

In Julia’s optimizer, functions are represented by their
single static assignment (SSA) form. We shall venture to
sketch a categorical description of SSA form and then
investigate the structure of Optic over such a category.

A. Duplication / Deletion of Values

In our examples, so far every values was used once and
exactly once. In SSA form, we may have an arbitrary number
of uses. To support this, we extend our category with the
diagonal ∆SSA : A → A ⊗ A) and deletion (⊣: A → I)
morphisms. Graphically, we have:

A

A

A

A (4)

B. Forward control flow

To account for control flow, we add a coproduct to our
category, which we shall denote by ⊕. Note that this is
different from the ⊗ operation, we have so far considered,
and we are thus creating a bimonoidal category, with two
separate monoidal structures. Graphically, we will indicate ⊕

by boxes around the operations in questions, so for example,
for the morphism (f⊕g)⊗h : (A⊕B)⊗C → (A′⊕B′)⊗C ′,
we will draw:

A

B

C

A′

B′

C ′

(5)

Now, we have an operation φ : A ⊕ A → A, that joins
control flow edges:

Aφ

A

A

(6)

and we will introduce an additional “conditonal branch”
operation br : A ⊗ C → A ⊕ A (where we say C is the
condition):

A

C A

A

(7)

We further impose the following co-predication relation:

A

C

B

A

A

B

B

∼= A⊗B

C A⊗B

A⊗B

(8)

As a notational convenience, we write ⊕c for the coprod-
uct introduced under some abstract condition c. In that case,
we may write the co-predication condition as

↔⊕:= (A⊕c B)⊗ (C ⊕c D) ∼= (A⊗ C)⊕c (B ⊗D)

To avoid running into technical difficulties, we further
allow commuting arbitrary morphisms through the branch
operations, such that we can be sure every A⊕B is always
potentially the direct result of a branch operation, such that
we may validly introduce abstract condition tags on any such
⊕ operation 1.

1I realize this is a bit handwavy. While I believe this works fine, I would
be interested in improvements to make this construction more formal and
potentially avoid the reliance on commuting morphisms through the branch
operation so as ot facilitate the future addition of side effects.

C. Lifting to the Optic category

1) Product Structure: Having defined the structure for
our bimonoidal category SSAC , what can we say about the
structure of OpticSSAC

? To be explicit, we’re still performing
the optic construction with respect to the ⊗ structure of our
category. Let us first look at the product itself. Do we have a
diagonal map in OpticSSA? Perhaps surprisingly, the answer
is no! To see this, let’s consider what we must construct:

We wish to find a map Optic(∆SSA) : (A,A′) →
(A,A′) ⊗ (A,A′). A representative for such a morphism
would have the form ⟨l, r⟩: l : A → M ⊗ A ⊗ A,
r : M ⊗ A′ ⊗ A′ → A′. Finding l is easy, we can just
use ∆SSA (letting M = I) from the underlying category.
However, there is no good way to construct r. A priori,
there is no reason to expect any morphism of the shape
A′ ⊗ A′ → A′ to exist, and even if such morphisms do
exists, there is no reason to expect them to have the required
uniqueness properties. It is important to note that this does
not prevent us from lifting ∆SSA to Optic in our applications
of interest, it simply means that ⊗ is not a categorical product
in OpticSSAC

, so we must make make a choice of summation
morphism in our lifting functor.

2) Coproduct Structure: Given our utter disappointment
with the product structure, can we have any hope to lift the
co-product structure. Yes, we do! First we construct the co-
product itself. For two optics ⟨l1|r1⟩ : (A,A′) → (B,B′)
with residual M1 and ⟨l2|r2⟩ : (C,C ′) → (D,D′) with
residual M2, we construct a new optic ⟨l12|r12⟩ where

l12 = (l1 ⊕ l2);↔⊕
r12 =↔−1⊕ ;(r1 ⊕ r2)

(9)

Similarly, we can confirm that this is indeed a coproduct
by exhibting the φ morphism. The trick here is to use the
residual to carry the branch history information. Perhaps the
simplest representative of Optic(φ) : (A⊕a A,A′ ⊕a A

′)→
(A,A′) would be ⟨l|r⟩ where

l = ∆SSA ; (idA⊕aA ⊗ φ)

r = d ; (π2 ⊕ π2)
(10)

where d is the distributive map. While this may be a little
abstract, hopefully it becomes clear as a picture:

A

A

φ A A′

A’

A’
(11)

Note that another representative of the same optic could
simply record the active component (e.g. by using the map
(x→ 1)⊕(y → 2) and reintroducing a branch on the RHS).

However, note that (at least the way we chose to set it up)
we do not have a unique lifting of the branch operator itself.

III. OPTIC FUNCTORS

One useful way to construct optics is to do so auto-
matically, from simpler descriptions. More formally, we are
interested in functors F : C → OpticD. The requirement
for F to be a functor means that composition in C matches
composition in OpticD, i.e. F (f) ;F (g) = F (f ;g). We shall
call such functors (whose codomain is an optic category)
optic functors.

We have already seen an example of this kind of operation!
In our definition of FastSetIndex above, we represented the
optic, as a path of indices. If we wanted to, we could consider
this path of indices description a category (e.g. the category
in which objects are Julia datatypes and there is morphisms
from a datatype to each of its field types). In this case, the
optic functor is essentially the definitions of the left and right
generic, functions. Of course, we could have also left off the
subtype and instead defined a constructor of OpticRepr with
the left and right definitions inline (such a constructor does
exist in our above definition, by virtue of the subtype). In
that case, we might want to check the functor law like so:
julia> o1 = OpticRepr(FastSetIndex(2) ;

FastSetIndex(1))
julia> o2 = OpticRepr(FastSetIndex(2)) ;

OpticRepr(FastSetIndex(1))
julia> o1(c->c+100, tup)
(1, (102, 3))

julia> o2(c->c+100, tup)
(1, (102, 3))

However, it is import to emphasize that while optic func-
tors are required to preserve composition, when implemented
as above, they are not required to produce the same repre-
sentative. Indeed, in our example:
julia> o1.l(tup)[1]
(1, (2, 3))

julia> o2.l(tup)[1]
((1, (2, 3)), (2, 3))

the two representatives o1 and o2 are not identical, even
though they represent the same optic.

A. Optic functors on programs

We now leave behind our trusty setindex example and con-
sider optic functors from programs. To keep the discussion
somewhat concrete, consider the following example: Alice,
Bob, and Clara are department heads at Consolidated Wid-
gets Incorporated. One day the anti-trust regulator decides
that Consolidated Widgets Inc is a little too consolidated and
trisects the company into AliceCo, BobCo and ClaraCo with
the three former department heads promoted to the CEOs of
their respective companies. They now have a problem: While
they know how to manufacture widgets, they now also need
to keep track of how much each individual part costs and
assign profits back to the appropriate company. Can optic
functors help? Yes!

Suppose the program for widget assembly is simply

widget(sweat, love) = C(A(sweat), B(love))

i.e. Alice and Bob both manufacture subassemblies from
raw inputes (sweat and love) and Clara handles the final

assembly). We wish to construct an optic functor AC that takes
in the widget construction function and spits out a function
that both constructs the widgets and accumulates prices on
the left side of the optic, and then distributes the profits on
the right side of the optic after the widgets have been sold.
Now, we have four function of interest here widget, A, B
and C. For each of A, B and C, we need to do some manual
work. Alice, Bob, and Clara need to do some manual work
to figure out what their costs are. We say that A, B and
C are primitive with respect to this functor. Alright, let’s
suppose we have our prices (for simplicity 10AC for Alice,
20AC for Bob and 30AC for Clara). We will also give each of
them a flat 30% profit margin. We will use the continuation
encoding of the optic to specify the value of AC on each of
our primitives:

Snippet 4
1 ACA(price, sweat) = let cost=10;
2 (price + cost, A(sweat)),
3 profit->(profit - cost * 1.3)
4 end
5 ACB(price, love) = let cost=20;
6 (price + cost, B(love)),
7 profit->(profit - cost * 1.3)
8 end

C is a little more tricky. For C, we have two arguments,
so on right side of the optic, we need to produce two outputs.
There are several ways to model this. We could consider only
allowing function with a single input and a single output,
together with primitive operations for packing (into a tuple)
and unpacking, or we could simply require the output to
always be a tuple whose length matches the original number
of arguments. Here we pick the latter encoding and write:

Snippet 5
1 ACC(aprice, bprice, a, b) = let cost=30;
2 (aprice + bprice + cost, C(a, b)),
3 profit->(take(profit, aprice),
4 take(profit, bprice))
5 end

Ok, phew that was a bit of work to figure out all the
primitives. However, now that this is done, we do get some
reward for our efforts. We get the definition of ACwidget for
free by applying the functor law. Recall that we essentially
defined widget = (A ⊗ B) ; C. Thus, applying the functor
law, we immediately get that ACwidget = (ACA⊗ACB) ;ACC

By tracing through definitions, we can write out an explicit
representative in the continuation encoding:

Snippet 6
1 function ACwidget(sweat_cost, love_cost, sweat, love)
2 aprice, a, a⋆ = ACA(sweat_cost, sweat)
3 bprice, b, b⋆ = ACB(love_cost, love)
4 price, c, c⋆ = ACC(aprice, bprice, a, b)
5 price, c, profit->begin
6 (a†,b†) = c⋆(profit)
7 love† = b⋆(b†)
8 sweat† = a⋆(a†)
9 (sweat†, love†)

10 end
11 end

Now, this might seem a bit complicated (and it is), but
that is precisely the point. Writing this out explicitly is quite
tedious, but there are no choices to be made in how it is

written. Once we have defined the optic functor on the
requisite primitives, we can make use of the composition
law to generate a representative of the functor applied
to any function that is a composition for our primitives.

B. Some notation

As we saw in the previous section, the explicit represen-
tatives generated by optic functors can be quite complicated.
To avoid getting lost, we should make some notational
conventions. To begin with, we shall consider input programs
to be represented by their SSA form representation. We shall
assume that the reader is familiar with SSA form IR (if not,
see the Julia devdocs on SSA form IR). Now, let AC be an
optic functor. In the context of applying AC to some function
f , we shall say that f is the primal function and similarly we
shall call the value computed by f the primal value. From
now on, we will generally be working with the continuation
encoding of an optic. By abuse of notation, we will write
ACf for the function that is the canonical representative of
the optic in continuation encoding (canonical here meaning
obtained by straightforward application of the functor laws).
We shall call this function the optic function. We shall call the
value returned from the optic function the focal bundle. Since
we sometimes want to look at it in isolation, we will call the
continuation generated by the optic function, the pullback
function, written f⋆ for some primal function f . Since f⋆

depends on the representative, unless otherwise specified, f⋆

shall refer to the pullback function generated by the canonical
optic function.

When looking at SSA form, IR, for some SSA value %a =
A(...) in the primal function, we will write (%a,%a⋆) =
ACA(...) in the optic function. The intended implication here
is that %a in the optic function is the same value as %a in the
primal function. This will generally be the case, as long as
the optic primitives obey this constraint. However, we have
not required this invariant on primitives in our definition
of the optic functor and there are (rare) cases in which it
is useful for these to be different. Where the distinction
matters, the context should be explicitly specified. Lastly,
we look at the pullback function. By the optic composition
law, pullbacks behave contravariantly to the primal function,
so for a call c = C(A,B) in the primal function, we will
have a call (%a†,%b†) = %c⋆(%c†). Where in general an
underline indicates that a value was captured from the optic
function.

C. Optic functors from SSA IR

When we discussed SSA form in section II, we identified
several structural features of the IR that did not lift uniquely
to the optic category. In particular, this means that we have
some freedom in choosing how these should lift for our optic
functor. In particular, the structural aspects of SSA IR that
did not have a unique lift were:

• Copy
• Delete
• Conditional Branch

As an exercise, let us go through these and choose an
implementation.

1) Copy: In our little widget manufacturing example from
the previous section, the objects being propagated in the
primal functions were in general intermediate products that
could only be used. But what happens if we introduce
trivially copyable goods into the equation? E.g. suppose
Alice and Bob both gain a trivially copyable input (perhaps
music they like to listen to, or maybe they both require a
license for JuliaPro), and that Dave produces such an input.
For simplicity, we will also drop Alice and Bob’s other
inputs. We have a new program:

Snippet 7
1 function clonewidget()
2 d = D()
3 a = A(d)
4 b = B(d)
5 c = C(a, b)
6 end

Let us look at some sensible policy choices2 we might
make. For example, we could decide that David gets to
decide what to charge for each copy of ‘d’:

Snippet 8
1 function ACclone(dprice, d)
2 (dprice, dprice), (d, d),
3 (profit1, profit2)->(profit1 + profit2)
4 end

or maybe everybody pays a fixed fee, independent of
David’s costs:

Snippet 9
1 function ACclone(dprice, d)
2 (1, 1), (d, d),
3 (profit1, profit2)->(profit1 + profit2)
4 end

or maybe everybody pirates his music and David gets
payed nothing:

Snippet 10
1 function ACclone(dprice, d)
2 (0, 0), (d, d),
3 (profit1, profit2)->0
4 end

or maybe the participants of our economy are playing hot
potato, and always exactly one of the participants needs to
pay:

Snippet 11
1 function ACclone(dprice, d)
2 rand(Bool) ? (dprice, 0) : (0, dprice), (d, d),
3 (profit1, profit2)->(profit1 + profit2)
4 end

However, note that while this is a valid definition under
our definition of an optic functor, applying AC now leads to
accumulation order dependence (the same happens in the
variant where cloning is done once per value). As a result,
AC would no longer preserve standard SSA invariants. This
is legal according to our definition, but it can be convenient
to be able to arbitrarily permute SSA transforms and optic
functors. Thus, we would generally only ever choose one of
the first two definitions.

2Welcome to Copyright 101 - Today’s topic: Category theory.

2) Delete: Like copy, we have some freedom what do
here. For our example, it would probably make sense to
dynamically disallow deleting objects that have a non-zero
price, so we might write:

Snippet 12
1 function ACdelete(dprice, d)
2 dprice != 0 && error("Who's gonna pay for that?")
3 ()->(0,)
4 end

3) Branch: Again we have several potential choices. The
primary reason that the branch operation was non-canonical
was because of the implicit delete of the branch condition.
However, it is possible for us to implement more complicated
behaviors. For example suppose we wanted to proportion-
ately assign to each input. We might write something like
(encoding for the branch functor is slightly tricky, this is
one example):

Snippet 13
1 function ACbranch(aprices, cprice, as, c)
2 # Smear the cost of `c' proportionately
3 total_a = sum(aprices)
4 aprices = map(p->p*(1 + cprice/total_a), aprices)
5 aprices, (c, as), profit->begin
6 (profit - cprice), cprice
7 end
8 end

However, as with the prior discussion, this would not
match standard ssa behavior (i.e. programs equivalent under
SSA would not longer be equivalent when lifted). As before,
this is legal, but may not be desirable.

IV. TANGENT SPACES

We will briefly define the concepts relevant to us, but oth-
erwise defer to any introductory text on differential geometry
3. Let M be a smooth manifold, C∞(M) the space of smooth
functions on M . A tangent vector ν to M at a is an R-
linear derivation from C∞(M) into R, i.e. a function from
C∞(M)→ R satisfying:

ν(f · g)(x) = g(a) · ν(f) + f(a) · ν(g) (12)

The collection of all tangent vectors to M at a form a
vector space, called the tangent space to M at a, TaM .
Additionally, if we glue all these vector spaces together, we
obtain the tangent bundle TM .

We can dualize this vector space and obtain the cotangent
bundle T ⋆M . Sections of the cotangent bundle are also called
differential 1-forms.

If we have a function between manifolds, say f : M → N ,
we obtain a pushforward of tangent spaces: f⋆ : TM → TN

given by:

(f⋆ν)g = ν(g ◦ f) (13)

(for g : C∞(M)), as well as a pullback of cotangent
spaces f⋆ : T ⋆N → T ⋆M given by

(f⋆dx)ν = dx(f⋆ν) (14)

3e.g. https://faculty.math.illinois.edu/ lerman/518/f11/8-19-11.pdf

These notions are generalizations of some of the standard
notions of derivatives that may be familiar from multivariable
calculus. Suppose f : Rn → Rm, Let πi be the component
projection function. We obtain a canonical basis, of the
tangent space TRn given by the unique functions such that

νi(πj) = i == j (15)

And similarly for the cotangent space.
Now the Jacobian Jf defined by

(Jf)ij =
∂fi
∂xj

(16)

is just matrix obtained by pushing forward the standard
basis fo TRn using f⋆. Equivalently, it is the transpose of
the pullback of the standard basis of T ⋆Rm.

As a special case suppose m = 1. Then we have a function
∇f : Rn → R, the gradient of f at x. Using our language,
this is simply the pullback of the differential one form dx1

from T ∗R.

V. ADVANCED OPTICS CONSIDERATIONS

A. Action of an Optic on the underlying category

The category OpticC acts on the underlying category C
in the following sense: We have a contravariant functor p :
OpticC → Set that assigns to every object (A,A′) the set
Hom(A,A′) and to morphisms ⟨l|r⟩ the morphism p⟨l|r⟩ :
Hom(B,B′)→ Hom(A,A′) given by:

p⟨l|r⟩f = l ; (idM ⊗ f) ; r

or graphically by assigning to a morphism f ∈
Hom(B,B′) the morphism obtained by plugging f into the
“hole” of the optic:

l rA

B

A′

B′f

(17)

B. Higher order optics

As hinted at above and proven in detail in Riley [1], Optic
is an endofunctor on the category of symmetric monoidal
categories, i.e. for a symmetric monoidal category C, OpticC
is once again a symmetric monoidal category. In particular,
this means we may repeat the application of Optic to obtain
higher order optics. Let us explicitly characterize second
order optics such that we may discuss some features that will
come in later. Objects in OpticOpticC are pairs of objects in
OpticC , i.e. in general quadruplets of objects in the original

category. We will write
(

(A1 A2)
(A3 A4)

)
for the higher order

optic that pairs the objects
(

A1

A2

) (
A3

A4

)
from the

original optic category. Then a representative of the optic

morphisms Optic
((

(A1 A2)
(A3 A4)

)
,

(
(B1 B2)
(B3 B4)

))
, is a

pair of optics ⟨Ol|Or⟩ where

Ol ∈ Optic
((

A1

A2

)
,

(
MO
M ′O

)
⊗
(

B1

B2

))
Or ∈ Optic

((
MO
M ′O

)
⊗

(
B3

B4

)
,

(
A4

A4

)) (18)

. We take representatives ⟨ll|rl⟩ of Ol and ⟨lr|rr⟩ of
Or with residuals Ml and Mr respectively. Writing the
morphisms out algebraically is a bit confusing, so let’s look
at the graphical representation:

ll
lr

rl
rr

A1 A2

B1 B3

A3 A4

B2B4

MO
Mr

M ′O

Ml

(19)
Here the dashed line plays the same role it did in the

original diagram of the optic: To compose optics, we “slice”
along the dashed line and insert the next higher order optic in
the middle. To illustrate the composition, we will first look
at two diagrams stacked on top of each other using the same
structure as in the previous diagram, to make the flow of
operations obvious.

ll
lr

rl
rr

A1 A2

B1 B3

A3 A4

B2B4

l′l
l′r

r′l
r′r

B1 B2

C1 C3

B3 B4

C2C4

(20)
We can relayout this to make the four segments more

obvious. This is done in figure 1. Now, if AC : C → OpticC
is an optic functor, then since it is monoidal functor, it
immediately lifts to a functor: AC : OpticC → OpticOpticC .
Note that optics constructed in this way will generally be
more constrained than the full optics construction. For ex-
ample, the 2-optic we constructed above has objects that are
in general 4-tuples ((A1, A2), (A3, A4)) and more generally
an n-optic will have objects are 2n tuples of objects in the
base category. However, if we obtain an optic by repeated
application of an optic functor, several of these objects will
be the same and we will generally have 1+n different objects
of the base category in play. E.g. ACACf for some morphism
f : A → B, would give a 2-optic ((A,A′), (A′, A′′)) →
((B,B′), (B′, B′′)).

For completeness, let us repeat this diagram, making use
of the notation we established above for optic obtained from
optic functors:

ACACf
AC(f⋆)

(ACf)⋆
f⋆⋆

A A′

B B′

A′ A′′
B′B′′

MAC
Mr

M ′AC

Ml

(21)
For completeness, let us proceed for one more step and

explicitly draw a 3-optic. As before, we have a pair of two
2-optics:

lll
llr

lrl
lrr

A1 A2

B1 B3

M1 M3

A3 A4

B2B4

M2M4

MlO

Mlr

M ′lO

Mll

(22)

rll
rlr

rrl
rrr

B5 B6

B7 B8

A5 A7 A6A8

M1 M2

M3 M4

MrO

Mrr

M ′rO

Mrl

(23)
Now, writing down the 3-optic is simply a matter of match-

ing up the Ms, and setting corresponding gaps opposite each
other. This is done in figure 2. Additionally, the composition
rule for 3 optics is shown in the appendix in figure 4.

C. Well-behaved primitives

We say a primitive of an optic functor AC is well behaved
if the LHS of ACf is simply the original function ‘f’, possibly
with a capture of the input or output value, i.e. ACf =
⟨∆SSA ; (id⊗ f)|f⋆⟩ or ACf = ⟨f ;∆SSA|f⋆⟩. For functions
of this form, various higher order concepts simplify and we
can perform analysis efficiently using dynamic programming.
Speciafically, for an order n transform, we only need to do
n2 − 1 work rather than 2n as would naively be expected.
To see this, note that by repeatedly applying the transform,
we can commute any function in our n-optic to just be a
structural transform together with f⋆⋆... where the number
of stars is the total number of stars in the original expression.
Then, letting numbers indicate the number of stars, we get
the following sequence of patterns for increasing optics: 0,
01, 0121, 01212321, 0121232123432321, which is amenable
to dynamic programming analysis.

Is this actually a useful notion? Certainly more advanced. Let’s leave it here for now.

VI. REVERSE MODE AD

There are many ways to describe the difference between
forward and reverse mode AD, but using our newfound
language, it becomes quite simple: Forward mode AD pushes
forward tangent vectors, while reverse mode AD pulls back
cotangent vectors.

Now for the payoff from all of our hard work from the
previous sections: Computing pullbacks of differential forms
has the structure of an optic. As a concrete example, suppose
we wanted to compute the gradient ∇f . Tracing through our
definitions above, we find that:

∇f(x) = f⋆(dx1(f(x))) (24)

so two evaluate this function we first have a covariant
evaluation of f , followed by a contravariant evaluation of
f⋆. Now for the formal construction: Let C be the cate-
gory of Riemannian manifolds. We have an optic category
OpticC(T ⋆M) 4 that pairs to each manifold its tangent
bundle. Now, guided by the above, we defined a functor:

←−
∂ f : C → OpticC(T

⋆M) (25)

where as indicated,
←−
∂ M = T ⋆M and on morphisms←−

∂ f = ⟨(a→ (a, f(a)), (a, z)→ f⋆|a(z)⟩.
We call this functor the Reverse mode AD optic functor.
There is very little left to do at this point, but our program

above did teach us that we need to define a few things:
For copy, we simply write

←−
∂ copy(x) = (x, x), (∆1,∆2)→ ∆1 +∆2 (26)

which is the unique map that preserves linear of the pullback.
For delete: ←−

∂ delete(x) = ()→ 0 (27)

For branch we have a choice. We could either inherit
the behavior from delete or return a poison value on the
backwards pass. This is a user level policy decision.

Lastly, we of course need to define derivatives for our
primitives. We defer this task to ChainRules.jl.

VII. HIGHER ORDER AD

A. Straightforwardly

Let us investigate the structure of higher order AD. One
straightforward way to obtain the higher order transform is to
simply treat the encoded optic as yet another SSA program.
As an example, we may explicitly do the transform

←−
∂
←−
∂ sin:

Snippet 14
1 function

←−
∂
←−
∂ sin(x)

2 sin(x), ∆->begin
3 ∆ * cos(x), ∆′->begin
4 ∆′

∆(-sin(x)), ∆′
*cos(x)

5 end
6 end, (∆′′′,∆′′)->begin
7 ∆′′

*cos(x) + ∆′′′

8 end

4We’re cheating here a little bit by calling the pair (A,A′) simply
T ⋆M , technically we have a dependent optic (x : M,TxM), but since
our programming language does not care about such things, we’re happy to
cheat an let others work out the tedious details.

ll

l′l

l′r

lr

rr

r′r

r′l

rl

A1 A2

C1 C3 C2C3

A3 A4

Fig. 1. Composition of two second order optics layed out horizontally. Indicated by dashed lines are the cut/glue lines of the original optic (as well as
the resulting optic, which corresponds with the cutline of the second optic).

lll
rll

rlr
llr

lrl
rrl

rrr
lrr

A1 A2

B1 B5

A5 A7

B7 B3

A3 A4

B8B4

A6A8

B2B6

M1

MrO

M3 M4

M ′rO

M2
Mrl

Mrr

Mll

MlO

Mlr

M ′lO

Fig. 2. Wiring diagram for the canonical 3-optic (A1−8) p→ (B1−8)

9 end

Recall from above the diagram for an optic functor

←−
∂
←−
∂ f

←−
∂ (f⋆)

(
←−
∂ f)⋆

f⋆⋆

A A′

B B′

A′ A′′
B′B′′

M←−
∂

Mr

M ′←−
∂

Ml

(28)
We can identify the various arrows with concrete values

in the program:

Diagram Program
Ml Capture of x in the last closure
M←−

∂
Capture of x in the first closure

B Return value of
←−
∂
←−
∂ sin

B′ ∆
Mr Capture of ∆, x by the inner closure
A′ Primal return value of the first closure (∆ ∗ cos(x))
A′′ ∆′

B′′ Second return, inner closure (∆′ ∗ cos(x))
M ′←−

∂
First return, inner closure (−∆′ ∗∆ ∗ sin(x))

Also, ∆′′′

B′ ∆′′

In particular, if we are taking the second derivative of sin,
here is the dataflow path of the final answer:

←−
∂
←−
∂ f

←−
∂ (f⋆)

(
←−
∂ f)⋆

f⋆⋆

A A′

1
1

0

x
(1, x)

−sin(x)

Ml

(29)
For a more complex example, the same transform is done

for a third order transform in the Appendix (figure 6).

B. Alternative encoding
The previous approach works, but it is somewhat un-

satisfying. Why? For me the two primary reasons are that
there is no manifest difference between the residuals and
the “holes” of the optic and that control flow is somewhat
non-transparent. At first order, the residual was encoded
as the capture of the original closure. However, at second
order, while most residuals are still closure captures, ∆′′ is a
residual, but does not look like a capture. This shows up more
at third order. To see what I mean when I say control-flow
is non-transparent, consider the order in which the functions
are called at third order:

←−
∂
←−
∂ f,
←−
∂
←−
∂ (f⋆) ,

←−
∂ (f⋆⋆) ,

←−
∂
((←−

∂ f
)⋆)

,(←−
∂ f

)⋆⋆

, f⋆⋆⋆,
(←−
∂ (f⋆)

)⋆

,
(←−
∂
←−
∂ f

)⋆ (30)

(if it’s not clear how to come up with this order, simply
look at the second order diagram, add

←−
∂ in front of ev-

erything, then reverse the diagram, add ⋆ after everything

and append the reversed diagram to the one that had
←−
∂

added). Comparing this to figure 6 in the appendix, we see
that in source code order, the sequence is 1, 2, 3, 6, 7, 5, 8,
so we need to do a lot of jumping around to keep track of
what’s happening. Can we re-arrange the encoding to make it
easier to understand what’s going on? Let’s take a clue from
the diagrams we’ve been working with, which do make the
control flow order manifestly clear. What if instead of our
second order example above, we wrote it as:

Snippet 15
1 function ∂2sin(x)
2 sin(x), ∆->begin
3 ∆ * cos(x), ∆′->begin
4 ∆′

*cos(x), let ∆′′′ = ∆′
∆(-sin(x))

5 ∆′′->∆′′
*cos(x) + ∆′′′

6 end
7 end
8 end
9 end

This avoids the two problems identified above: The ∆′′′

becomes an explicit capture and the order of operations
becomes quite clear (outer functions are evaluated before
their inner closures). This representation is a bit of a re-
think of the standard transform, but it is entirely equivalent.
To get more familiar with it, let’s say, we’d like to take the
third order transform of the following functions:

Snippet 16
1 function f(x)
2 y = g(x)
3 z = h(y)
4 return z
5 end

We would have:
Snippet 17

1 function
←−
∂ 3f(x)

2 y, y =
←−
∂ 3g(x)

3 z, z =
←−
∂ 3h(y)

4 z, ∆->begin
5 α, α = z(∆)
6 β, β = y(α)
7 β, ∆′->begin
8 γ, γ = β(∆′)
9 δ, δ = α(γ)

10 δ, ∆′′->begin
11 ϵ, ϵ = δ(∆′′)
12 ζ, ζ = γ(ϵ)
13 ζ, ∆′′′->begin
14 η, η = ζ(∆′′′)
15 θ, θ = ϵ(η)
16 θ, ∆4->begin
17 ι, ι = θ(∆4)
18 κ, κ = η(ι)
19 κ, ∆5->begin
20 λ, λ = κ(∆5)
21 µ, µ = ι(λ)
22 µ, ∆6->begin
23 ν, ν = µ(∆6)
24 ξ, ξ = λ(ν)
25 ξ, ∆7->begin
26 o = ξ(∆7)
27 π = ν(o)
28 return π
29 end
30 end
31 end
32 end
33 end
34 end
35 end

36 end
37 end

We see still have the same number of functions, so the
complexity isn’t reduced, but at least it’s fairly orderly. We
do have to take special care of primitives, because we’re
no longer just applying the same transformation to the rule
function itself. So suppose we have some primitive rule like:

Snippet 18
1 struct ∇a
2 x
3 end
4 (::∇a) = ...
5

6 function rrule(::typeof(a), x)
7 b(x), ∇a(x)
8 end

For the first order, we would just expose the raw pullback
as we do with the naive transform. However, for second
order, things become slightly more complicated:

Snippet 19
1 function

←−
∂ 2a(x)

2 (y, y), y =
←−
∂ rrule(a, x)

3 y, ∆->begin
4 (α1, α2), α =

←−
∂ typeof(y)(y, ∆)

5 (α1, α2), (∆′
1, ∆′

2)->begin
6 (∆′′′, β) = α((∆′

1, ∆′
2))

7 β, ∆′′->begin
8 # Drop gradient w.r.t. `rrule`
9 (_, a', x') = y(∆′′, ∆′′′)

10 return (a', x')
11 end
12 end
13 end
14 end

It’s worth comparing this with the explicitly written out
and inlined version of sin above (which is a primitive).

It’s also worth taking a look at the third order version of
that example to see the generalizing pattern:

Snippet 20
1 function

←−
∂ 3a(x)

2 (y, y), y =
←−
∂ 2rrule(a, x)

3 y, ∆->begin
4 ((α1, α2), α) =

←−
∂ 2typeof(y)(y, ∆)

5 (α1, α2), (∆′
1, ∆′

2)->begin
6 (∆′′′, β), β = α((∆′

1, ∆′
2))

7 β, ∆′′->begin
8 (_, γ1, γ2), γ = y(∆′′, ∆′′′)
9 (γ1, γ2), (∆4

1,∆
4
2)->begin

10 (δ1, δ2), δ = γ((0, ∆4
1, ∆4

2))
11 δ1, ∆5->begin
12 (ϵ1, ϵ2), ϵ = β(δ2, ∆5)
13 (ϵ1, ϵ2), (∆6

1,∆
6
2)->begin

14 (ζ1, ζ2) = ϵ((∆6
1,∆

6
2))

15 ζ2, ∆7->begin
16 return δ(∆7, ζ1)
17 end
18 end
19 end
20 end
21 end
22 end
23 end
24 end

If this structure seems familiar, it should! In our 3-optic
diagram we build 3-optics as pairs of 2-optics that composed
in a canonical way. This is just the very same thing (compare

functions lxx
with closures returned from

←−
∂ 2rrule and rxx

with closures returned from
←−
∂ 2typeof(y)).

There is one additional case that’s worth considering: We
allow explicitly calling the derivative operator in the primal.
What happens when we encounter such a function. The
answer is fairly straightforward. We’re basically doing the
inverse of the rrule case above. In particular, we’re adapting
an n + 1 optic to an n optic by appropriate interleaving.
Suppose we have a primal function ∇ given by:

Snippet 21
1 function ∇(f, x)
2 (a, a) =

←−
∂ (f, x)

3 y = g(a)
4 z = a(y)
5 return z
6 end

Applying our transform, we get:
Snippet 22

1 function
←−
∂ ∇(f, x)

2 (a, a) =
←−
∂ 2(f, x)

3 y, y =
←−
∂ g(a)

4 z, z = a(y)
5 z, ∆->begin
6 α, α = z(∆)
7 β = y(α)
8 ϵ = α(β)
9 return ϵ

10 end
11 end

Note that we went through all four callbacks of the 2-
optic

←−
∂ 2(f, x), even though the top level optic only had two

callbacks. For completeness, here is the third order version
(second order transform):

Snippet 23
1 function

←−
∂ 2∇(f, x)

2 (a, a) =
←−
∂ 3(f, x)

3 y, y =
←−
∂ g(a)

4 z, z = a(y)
5 z, ∆->begin
6 α, α = z(∆)
7 β, β = y(α)
8 ϵ, β = α(β)
9 ϵ, ∆′->begin

10 λ, λ = ϵ(∆′)
11 ζ, ζ = β(λ)
12 µ, µ = λ(ζ)
13 µ, ∆′′->begin
14 θ, θ = µ(∆′′)
15 ι = ζ(θ)
16 κ = θ(ι)
17 return κ
18 end
19 end
20 end
21 end

VIII. IMPLEMENTATION DETAILS

The key to a performant reverse mode AD implementa-
tion is to pick efficient residual representatives M for our
optic as well as introducing minimal additional overhead
in the tensor. In julia, the latter means being amenable to
type inference (as well as ideally not being significantly
harder on type inference than a simple primal inference to
avoid unexpected performance cliffs). So, how do perform
type inference on morphisms from the optic? Well, if we

pick a particular representative, we obtain morphisms in
the underlying category that we can do with whatever we
want, including performing inference. However, picking a
representative of course fixes the residual, which we’d like
to avoid. Additionally, we run into problems with nested
application of the functor.

IX. APPENDIX

Printing the appendix is encouraged to use as a template
for working through examples.

REFERENCES

[1] M. Riley, “Categories of optics,” 2018. [Online]. Available:
https://arxiv.org/abs/1809.00738

ll
lr

rl
rr

A1 A2

B1 B3

A3 A4

B2B4

l′l
l′r

r′l
r′r

B1 B2

C1 C3

B3 B4

C2C4

Fig. 3. Composition rule for 2-optics (larger version)

lll

l′ll

rll
rlr

llr

lrl
rrl

rrr
lrr

A1 A2

B1 B5

A5 A7

B7 B3

A3 A4

B8B4

A6A8

B2B6

M1

MrO

M3 M4

M ′rO

M2
Mrl

Mrr

Mll

MlO

Mlr

M ′lO

r′ll
r′lr

l′lr

l′rl
r′rl

r′rr
l′rr

B1 B2

C1 C5

B5 B7

C7 C3

B3 B4

C8C4

B6B8

C2C6

M ′1
MrO

′

M ′3 M ′4

M ′rO
′

M ′2
M ′rl
M ′rr

M ′ll
M ′lO

M ′lr

M ′lO
′

Fig. 4. Composition rule for 3-optics

1 function
←−
∂
←−
∂ sin(x)

2 sin(x), ∆->begin
3 ∆ * cos(x), ∆′->begin
4 ∆′*∆*(-sin(x)), ∆′*cos(x)
5 end
6 end, (∆′′′,∆′′)->begin
7 ∆′′*cos(x) + ∆′′′

8 end
9 end

Fig. 5. Explicitly written 2-nd order example (larger version)

1 function
←−
∂
←−
∂
←−
∂ sin(x)

2 (sin(x), ∆->begin #
←−
∂
←−
∂ (f⋆)

3 ∆ * cos(x), ∆′->begin #
←−
∂ (f⋆⋆)

4 ∆′*∆*(-sin(x)), ∆′*cos(x), ((∆4,∆5),)->begin # f⋆⋆⋆

5 (-∆4
*∆
′
*∆*cos(x) +

6 -∆5
*∆
′
*sin(x),

7 -∆4
*∆
′
*sin(x)),

8 -∆4
*∆*sin(x)+∆

5
*cos(x)

9 end
10 end, (∆6,(∆7,∆8))->begin #

(←−
∂ (f⋆)

)⋆

11 (∆6
∆(-sin(x)) + ∆7,

12 ∆6
*cos(x) + ∆8)

13 end
14 end, (∆′′′,∆′′)->begin #

←−
∂
((←−

∂ f
)⋆)

15 ∆′′*cos(x) + ∆′′′, ∆9->begin #
(←−
∂ f

)⋆⋆

16 (-∆9
*∆
′′
*sin(x)),

17 (∆9, ∆9
* cos(x))

18 end
19 end), (((∆10,∆11),∆12),)->begin #

(←−
∂
←−
∂ f

)⋆

20 ∆10
*cos(x) + ∆11 + ∆12

21 end
22 end

Fig. 6. Explicitly written out third-order example

